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Staphylococcus aureus frequently colonizes the airways of patients with compromised airway defenses (e.g.,
cystic fibrosis [CF] patients) for extended periods. Persistent and relapsing infections may be related to live
S. aureus bacteria actively residing inside epithelial cells. In this study, we infected a respiratory epithelial cell
line, which was derived from a CF patient, with S. aureus RN6390. Internalization of S. aureus was found to be
time and dose dependent and could be blocked by cytochalasin D. Transmission electron microscopy revealed
that internalized bacteria resided within endocytic vacuoles without any evidence of lysosomal fusion in a 24-h
period. The results of internalization experiments and time-lapse fluorescence microscopy of epithelial cells
infected with green fluorescent S. aureus indicate that, after an initial lag period of 7 to 9 h, intracellular
bacteria began to replicate, with three to five divisions in a 24-h period, leading to apoptosis of infected cells.
Induction of apoptosis required bacterial internalization and is associated with intracellular replication. The
slow and gradual replication of S. aureus inside epithelial cells hints at the role of host factors or signals in
bacterial growth and further suggests possible cross talk between host cells and S. aureus.

Respiratory infections with Staphylococcus aureus are com-
mon in patients with compromised airway defenses (e.g., cystic
fibrosis [CF] and hospitalized patients) (5, 25). Despite the
prevalence of these infections, the mechanism by which S.
aureus colonizes the respiratory tract of susceptible patients is
not well defined. In the case of CF, it has been suggested that
inactive defensins due to elevated salt concentrations in the
surface fluid of respiratory epithelium (24) and imbalances in
fluid flow across the epithelium (14) lead to progressively
thickened mucus and impaired mucociliary clearance, thereby
promoting persistent colonization and, quite frequently, infec-
tions. Additionally, asialoglycolipid (asialo-GM1), which is ex-
posed in increased numbers on the surfaces of CF epithelial
cells, has been postulated to serve as a receptor for CF patho-
gens such as S. aureus (12). Furthermore, the development of
bacterial biofilms as sessile communities with inherent antimi-
crobial resistance on the surfaces of airway tissues also plays a
role in the development of chronic lung diseases (8).

S. aureus is second to Pseudomonas aeruginosa as one of the
most common pathogens isolated from the respiratory tracts of
CF patients (5). Contrary to P. aeruginosa infection, persistent
S. aureus infection starts in early infancy, often preceding
chronic infections with P. aeruginosa (1, 26). It has been hy-
pothesized that persistent S. aureus infections in diseases other
than CF may be related to internalization of the pathogen by
host cells, thereby creating a protected environment where the
bacteria are shielded against host defenses and antimicrobial
therapy (3, 10, 19). The persistence of S. aureus inside epithe-
lial cells may also signal possible cross talk between the micro-
organism and the epithelial cell. In particular, recent studies
have shown that both bovine mammary epithelial cells and

human endothelial cells internalize S. aureus and subsequently
undergo apoptosis (3, 19). However, the intracellular fate of S.
aureus (i.e., dead or alive) is not clear from these studies.

Apoptosis is an innate cell suicide mechanism that plays a
role in homeostasis in multicellular organisms. In contrast to
necrosis, however, apoptosis is accompanied by little inflam-
matory response. Increasing numbers of bacterial pathogens
have been found to utilize an assortment of virulence factors to
interact with key components of the cell death program (29);
these interactions, leading to eventual apoptosis, may be nec-
essary to subvert normal host defenses (27).

In this study, we constructed a derivative of S. aureus strain
RN6390 containing a plasmid expressing a green fluorescent
protein (GFP) variant (excitation maxima at 488 nm) that is
amenable to fluorescence microscopy. Using green fluorescent
S. aureus, we demonstrated clearly that internalized S. aureus is
not a passive bystander but rather replicates actively inside
pulmonary epithelial cells and induces apoptosis. Compared to
extracellular growth (cell division every 20 min), intracellular
replication was indolent (three to five divisions in 24 h) and did
not begin until 6 to 7 h after internalization. The gradual
replication of S. aureus hints at the role of host factors or
signals on intracellular bacterial growth. This finding, coupled
with electron microscopy data that show that intracellular bac-
teria at 24 h after infection remained in vacuoles without evi-
dence of lysosomal fusion, is concordant with possible interac-
tions between intracellular S. aureus and host cells. As we have
consistently found intracellular replication to precede apopto-
sis, it is conceivable that S. aureus, by virtue of its internaliza-
tion and replication within pulmonary epithelial cells, could
contribute to persistent pulmonary infections in susceptible
patients.

MATERIALS AND METHODS

Bacterial strains and growth conditions. S. aureus RN6390 (20), a laboratory
strain that has been shown to be virulent in several animal models (4, 6), was
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chosen for the internalization experiments. An overnight culture grown at 37°C
with aeration in brain heart infusion (Difco) was washed twice in phosphate-
buffered saline (PBS), vortexed, passed through a 5-mm-pore-size filter, diluted
to an optical density at 650 nm of 0.4 (;108 CFU/ml), and resuspended in
invasion medium (growth medium without antibiotics, antimycotics, or fetal
bovine serum). To visualize bacteria in contact with epithelial cells, we used S.
aureus RN6390 containing the plasmid pALC1743, a pSK236-derived shuttle
plasmid carrying an active S. aureus promoter (RNAIII promoter) which drives
the expression of GFPuvr, a derivative of GFPuv that is optimized for prokaryotic
expression (Clontech, Palo Alto, Calif.). RNAIII promoter was chosen because
of its detectable activity in the log phase and maximal activity in the stationary
phase. GFPuvr was constructed by introducing an S65T mutation into gfpuv with
the Quick Change mutagenesis kit (Stratagene, La Jolla, Calif.). The mutated
gene (gfpuvr) was cloned into the shuttle vector pSK236, which contains an
upstream RNAIII promoter fragment, to yield pALC1743. The alteration in
excitation maxima from 395 to 488 nm was verified by spectrofluorometry as
described previously (7). For invasion experiments with heat-killed S. aureus,
bacteria were incubated for 1 h at 55°C and used in invasion assays as described
below.

Cell culture of the CF cell line CFT-1 and the complementary cell line CFT-
1-LCFSN. CFT-1, a papilloma virus-immortalized tracheal epithelial cell line
derived from a CF tissue donor homozygous for the DF508 mutation of the CF
transmembrane regulator (CFTR) gene (28) and its complemented counterpart
with the wild-type human CFTR, CFT-1-LCFSN, were used for our experiments.
The growth medium was Dulbecco’s modified Eagle’s medium Nut Mix F-12
Ham (Cellgro; Mediatech) plus 10% fetal bovine serum (HyClone Laboratories),
supplemented with the following (all from Sigma): 5 mg of insulin/ml, 3.7 mg of
endothelial cell growth supplement/ml, 25 ng of epidermal growth factor/ml, 3 3
1028 M triiodothyronine, 1026 M hydrocortisone, 5 mg of transferrin/ml, and 10
ng of cholera toxin/ml. This medium also contained an antibiotic-antimycotic
solution containing 100 U of penicillin G/ml, 25 mg of amphotericin B, and 100
mg of streptomycin/ml (Cellgro; Mediatech). Prior to use, cells were seeded at
6 3 104 cells/well in 24-well tissue culture plates (Costar) and grown for 3 days
at 37°C with 5% CO2 to confluency (approximately 2 3 105 cells/well) in medium
containing no antibiotics or antimycotics.

Internalization assay. Internalization of S. aureus by the airway epithelial cells
was determined as described previously (13). Briefly, epithelial cells were in-
fected with bacteria diluted in invasion medium. After various incubation peri-
ods, the medium was replaced by medium containing 100 mg of gentamicin
(Sigma)/ml to kill extracellular bacteria. After additional incubation, infected
cells were washed thrice with PBS to remove gentamicin, treated with 200 ml of
0.25% trypsin–0.1% EDTA in Hanks balanced salt solution (Cellgro; Mediatech)
for 5 min, and lysed with 800 ml of 0.025% Triton X-100 (Sigma) in water. Cell
lysates were diluted, plated in triplicate on brain heart infusion agar, and incu-
bated overnight at 37°C, and the numbers of CFU per milliliter were determined.

DIC, phase-contrast, and epifluorescence microscopy. The internalization ex-
periments were performed in borosilicate chamber slides (Labtek chambered
coverglass; Nalge Nunc International). Microscopy was performed with an Olym-
pus IX-70 equipped with 403/0.6 numerical aperture (phase) and 1003/1.35
numerical aperture differential interference contrast (DIC) objectives. For
epifluorescence, we used a 150-W xenon lamp (Optiquip) and standard filter
sets. Images were acquired with a cooled charged coupled device camera
(Hamamatsu Orca) using in-house software.

To serially observe intracellular replication of S. aureus in airway epithelial
cells, the medium was buffered with 20 mM HEPES (pH 7.4), and infected cells
on the microscope stage were kept at 37°C. To ensure that these internalized
green fluorescent bacteria are intracellular, we stained the epithelial cells with
chicken anti-protein A antibody (1:3,000) (Accurate Chemicals) to detect extra-
cellular bacteria, followed by a second antibody conjugated to tetramethyl rho-
damine isocyanate (TRITC).

TEM. For transmission electron microscopy (TEM) analysis, the internaliza-
tion experiment was performed with cells seeded on Thermanox coverslips
(Nalge Nunc International). At different times after infection, the monolayers
were washed with PBS, fixed in 3% glutaraldehyde, and postfixed in 1% osmium
tetroxide. Samples were serially dehydrated in alcohol and embedded in Epon.
Sections were stained with uranyl acetate and lead citrate and viewed in a
transmission electron microscope (JEM 100CX; JEOL).

Inhibition assays. For inhibition experiments, cells were treated with cytocha-
lasin D (Sigma) (0.5 mg/ml) or colchicine (Sigma) (10 or 40 mg/ml) for 30 min
prior to the internalization assay and subsequently during the 2-h infection
period. Cycloheximide (Sigma) (20 mg/ml) was added 30 min prior to the infec-
tion period and remained throughout the experiment. To inhibit RNA transcrip-
tion of intracellular bacteria, rifampin (0.018 mg/ml), which readily permeates
cells, was added to the culture 2 h postinfection.

Assessment of apoptosis by DNA laddering and Cy3-labeled annexin V stain-
ing. DNA of infected and noninfected cell monolayers was extracted with phe-
nol-chloroform and ethanol precipitated as described in reference (29). DNA
fragments were resolved in a 2% agarose gel and stained with ethidium bromide.
To confirm apoptosis, infected cells were stained with Cy3-labeled annexin V
(Sigma), according to the manufacturer’s directions, or with propidium iodide
(PI) and were visualized with an Olympus inverted microscope.

RESULTS

Internalization of S. aureus by CFT-1 and LCFSN cells. We
used CFT-1 cells and the complemented counterpart, LCFSN
cells, for our internalization experiments. Pilot data revealed
that S. aureus was internalized by both cell lines in a time- and
dose-dependent manner (data not shown). Since both cell lines
yielded similar internalization results at higher inocula (106 to
107 CFU/ml) (multiplicity of infection [MOI], 5:1 to 50:1), we
decided to focus on the CF cell line, CFT-1, for the ensuing
studies with 1 3 106 to 5 3 106 CFU/ml as the inoculum for
epithelial cells (;2 3 105 cells) for a 1-h infection period,
followed by gentamicin treatment to kill extracellular bacteria.

To determine whether the cytoskeleton of epithelial cells is
involved in bacterial uptake, epithelial cells were treated with
cytochalasin D (to inhibit actin polymerization) or with colchi-
cine (to inhibit microtubule formation) for 30 min prior to and
during infection. Internalization of S. aureus was blocked by
cytochalasin D at 0.5 mg/ml [mean internalization 6 standard
deviation, 0.7% 6 0.25%, versus 9.94% 6 3.29% for the un-
treated control at 5 h after infection] and colchicine at 40
mg/ml (3.35% 6 1.88% for the treated sample at 5 h after
infection). Cycloheximide treatment (20 mg/ml) did not influ-
ence the uptake of S. aureus (data not shown). These data
suggest that actin polymerization plays a major role in bacterial
internalization but that the uptake process does not require de
novo protein synthesis in epithelial cells.

To examine if the internalization process requires live bac-
teria, we heat killed S. aureus at 55°C for 1 h prior to the
internalization assay. TEM revealed that heat-killed bacteria
were also effectively internalized, indicating that internaliza-
tion is not dependent on metabolically active organisms (data
not shown).

Replication of intracellular S. aureus. (i) Internalization,
with determination of CFU/ml. To determine if intracellular
replication occurs, we enumerated hourly the number of intra-
cellular bacteria in triplicate in 24-well plates beginning 2 h
after infection, using 106 CFU/ml as the inoculum. As shown in
Fig. 1, the number of intracellular bacteria did not change
significantly until ;7 to 9 h after infection, at which time the
number of intracellular bacteria noticeably increased, indicat-
ing initiation of replication. As a negative control, we found
that a protein A-deficient mutant of S. aureus invaded the
CFT-1 cells poorly.

(ii) TEM studies. To facilitate visualization with TEM, we
infected epithelial cells with a large inoculum (108/ml; MOI,
1:500). Electron microscopy revealed that endocytosis oc-
curred within 5 min after infection (Fig. 2A). As shown in Fig.
2B, pseudopodia engulfing a bacterium were observed, sug-
gesting a zipper-like mechanism of internalization. Bacteria
were uniformly found in vacuoles inside the cells (Fig. 2C, D,
and E), with one or two bacteria per vacuole. Increasing num-
bers of intracellular bacteria could be observed as the incuba-
tion period lengthened. At 24 h after infection, some cells were
filled with intracellular bacteria (Fig. 2F). We also performed
similar studies with heat-killed bacteria. Some vacuoles con-
taining heat-killed bacteria (at 24 h after infection) were found
to fuse with lysosomes, whereas vacuoles from epithelial cells
infected with live bacteria did not (data not shown).

(iii) Fluorescence microscopy. To analyze bacteria directly
inside living cells, we infected cells with S. aureus RN6390
expressing GFPuvr. At 4 h after infection, morphologically nor-
mal cells (Fig. 3AI) similar to the noninfected control (not
shown) were observed. However, green fluorescent bacteria
(Fig. 3BI, in gray scale) in association with several cells were
clearly visible when DIC and fluorescence images were merged
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(Fig. 3CI). At 24 h after infection, dead cells, appearing
rounded and granulated, were found to be detached from the
bottom of the well (Fig. 3AII). This cellular morphology is
consistent with that of apoptosis (29). The noninfected control

also demonstrated occasional rounded and detached cells, but
to a much lesser extent (not shown). Heat-killed RN6390, like
the noninfected control, also did not induce significant apo-
ptosis. Combining DIC (Fig. 3AII) and fluorescence micros-

FIG. 1. Study of intracellular replication. The internalization experiment was performed as described in Materials and Methods. Cells were infected for 1 h before
gentamicin application and were lysed hourly to enumerate intracellular bacteria. Results are presented as means 6 standard deviations (error bars) from one
representative experiment repeated three times in triplicate.

FIG. 2. Electron micrographs of epithelial cells infected with S. aureus. Epithelial cells were infected with S. aureus at an MOI of 1:500 and fixed at various time
points. (A) Immediately after infection (magnification, 316,000); (B) 5 min after infection (magnification, 38,300); (C) 15 min after infection (magnification, 33,300);
(D) 30 min after infection (magnification, 33,300); (E) 1 h after infection (magnification, 33,300); (F) 24 h after infection (magnification, 33,300).
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copy (Fig. 3BII), revealed that many apoptotic cells were filled
with green fluorescent bacteria (Fig. 3CII).

To follow the replication of intracellular S. aureus more
closely, we monitored the replication of GFPuvr-expressing
bacteria inside a single living cell for 14 h. As displayed in Fig.
4, replication of intracellular bacteria in this particular cell
started at 9 h after infection (Fig. 4A), with increasing bacterial
numbers as the incubation time lengthened (Fig. 4C and D).
Phase-contrast images revealed that the morphology of the
infected cell did not change until the 12th to 13th h after
infection, at which time the cell began to round up with single
blebbings (Fig. 4CI), proceeding to more pronounced round-
ing, blebbings, and subsequent detachment of the cell at 13.5 h
(Fig. 4DI) as described elsewhere for apoptotic cells (27).

To ensure that most of the green fluorescent bacteria were
intracellular, we stained extracellular S. aureus with chicken
anti-protein A antibody followed by anti-chicken antibody con-
jugated to TRITC. Only a very few green fluorescent bacteria
were stained red (TRITC), suggesting that most of the bacteria
were intracellular (Fig. 5).

Apoptosis induced in CFT-1 airway epithelial cells by infec-
tion with S. aureus, as assessed by DNA fragmentation. A
hallmark of apoptosis is the characteristic DNA laddering
upon gel electrophoresis. In early infection (i.e., 5 h after
infection), extracted DNA from infected cells did not exhibit
any fragmentation, even when the bacterial inoculum was in-
creased to 107 CFU/ml (Fig. 6, lanes 2 through 4). At 24 h after
infection, DNA laddering characteristic of apoptotic cells was
apparent (Fig. 6, lanes 6 through 8). In contrast, similar frag-
mentation did not occur in noninfected controls. Remarkably,

DNA fragmentation was not observed in infected cells in which
internalization of S. aureus had been blocked by cytochalasin
D. Likewise, cells infected with heat-killed bacteria or cells
infected with live bacteria but treated with rifampin to inhibit
bacterial transcription did not manifest any DNA fragmenta-
tion (data not shown).

As annexin V is an early marker of apoptosis, we also stained
infected cells and noninfected controls with Cy3-labeled an-
nexin V, using PI as an indicator of necrosis, since this dye is
excluded in early apoptotic cells. In correlation with the DNA
fragmentation data, there was no staining with annexin V in
either infected or control cells at 4 h after infection. However,
at 24 h after infection, cells with GFPuvr-expressing bacteria
were stained with Cy3-labeled annexin V but excluded PI (Fig.
7). These results, together with the DNA laddering data, dem-
onstrated that cells infected with S. aureus became apoptotic.

DISCUSSION

Epithelial cells, which have an intact host defense mecha-
nism, are normally efficient in keeping the respiratory tract
sterile in healthy individuals. However, in compromised indi-
viduals such as CF patients, a breach of the innate immune
system (2) leads to chronic and persistent pulmonary infections
with S. aureus (5). Although S. aureus has been classically
described as an exclusively extracellular pathogen, there is
growing evidence that S. aureus may be internalized into epi-
thelial cells (3, 10, 11, 17, 19). However, because of technical
limitations in visualizing live intracellular bacteria, it was not
possible to determine in these antecedent studies whether the

FIG. 3. Analysis of living epithelial cells infected with GFPuvr-expressing S. aureus RN6390. Cells were infected for 4 h (panels AI, BI, and CI) or 24 h (panels AII,
BII, and CII). (AI and AII) DIC; magnification, 392. (BI and BII) Fluorescence microscopy (in gray scale). (CI and CII) Merged images of DIC and fluorescence
microscopy. The arrows point to fluorescent colonies.
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bacteria are actively replicating or are merely intracellular by-
standers (i.e., acting like latex particles). Alternatively, with a
large infecting inoculum, the recovered organisms may repre-
sent adherent but extracellular colonies that are not killed
efficiently by gentamicin.

From the bacteria’s perspective, there are obvious advan-
tages in maintaining an intracellular location, since the micro-
organisms will be able to avoid many host defense mechanisms
as well as to shield themselves from extracellular antibiotics.
Importantly, indolent but gradual intracellular replication may
minimize acute inflammatory responses from the host. Addi-
tionally, a successful sojourn inside nonphagocytic cells (e.g.,
pulmonary epithelial cells) would likely entail subversion of the
host signals in the endocytic pathway (e.g., for fusion with the
lysosome), thus implying cross talk between S. aureus and host
cells. For these reasons, we wanted to demonstrate intracellu-
lar replication of green fluorescent S. aureus, using pulmonary
epithelial cells as a model.

Our studies demonstrate that S. aureus was efficiently inter-
nalized by CF airway epithelial cells as well as the comple-
mented counterpart in a time- and dose-dependent fashion.
Consistent with the results of Pier et al. (21), we did not
observe differences in internalization between the CF cell line

CFT-1 and the complemented cell line LCFSN at challenge
inocula of 106 to 108 CFU/ml, indicating that S. aureus inter-
nalization is not mediated by CFTR. Contrary to the study by
Imundo et al. (12), who found increased S. aureus adherence to
CF cell lines compared with controls, our studies compared
internalization and not adherence. Interestingly, Sinha et al.
(23) recently showed that S. aureus internalization by several
cell lines, including a kidney cell line, endothelial cells, and
primary fibroblasts, was mediated by the binding of the bacte-
rial fibronectin-binding receptor to cellular fibronectin.
Whether the fibronectin-binding protein of S. aureus mediates
bacterial internalization via the a5b1-integrin fibronectin re-
ceptor on airway epithelial cells remains to be determined.

Bacterial uptake, as revealed by electron microscopy, is
probably facilitated by the formation of pseudopodia which
engulf the organism. The close contact of the bacterium with
the host membrane resembles a zipper-like mechanism, as has
been described for the internalization of Yersinia. Accordingly,
Yersinia binds mammalian adhesion receptors via a surface
protein (invasin). In contrast, a trigger-type mechanism is used
by Salmonella species to induce internalization by injecting
bacterial proteins into the host cell cytosol (9).

Contrary to the classical view of S. aureus as an extracellular

FIG. 4. Intracellular replication of GFPuvr-expressing S. aureus inside a single epithelial cell. Cells were infected for 1 h before gentamicin application and then
monitored under a microscope kept at 37°C at 30-min intervals beginning at 7 h postinfection up to 14 h. (A) Fluorescence microscopy merged with phase contrast
(I) at 8.5 h; black arrows point to the monitored epithelial cell, while white arrows indicate fluorescent bacteria on a gray-scale image (II). The white color indicates
saturation of the gray-scale image for green fluorescence (maximum intensity). (B, C, and D) Images at 9.5, 12, and 13.5 h.
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pathogen, we found that S. aureus replicates actively inside
pulmonary epithelial cells. Although other gram-positive bac-
teria such as group A and group B streptococci have been
shown to be internalized by respiratory epithelial cells, the
intracellular fate of these organisms (i.e., replication versus
degradation within the endosome) has not been defined (16,
22). In this study, the replication of intracellular S. aureus was
confirmed by several experimental techniques, including (i)
internalization experiments with hourly bacterial enumeration,
(ii) TEM studies showing higher numbers of intracellular bac-
teria at 24 h after infection than at 1 h, and (iii) monitoring
living cells infected with GFPuvr-expressing S. aureus by time-
lapse video and directly observing initiation of intracellular
replication at ;9 h after infection. The combination of these
experimental approaches clearly demonstrated the replication
of S. aureus inside pulmonary epithelial cells. The observation
that intracellular replication initiated after a lag phase of 7 to
9 h emphasizes the putative role of host signals or factors in
intracellular bacterial growth. Alternatively, S. aureus bacteria
may have to adapt to the intracellular milieu, with the eventual
delay of de novo protein synthesis and DNA replication.

In our TEM study, we consistently observed that live S.
aureus internalized into pulmonary epithelial cells remained in
vacuoles without any evidence of lysosomal fusion even 24 h
after infection. In contrast, some vacuoles containing heat-
killed bacteria revealed evidence of lysosomal fusion. This

observation is consistent with our replication data, indicating
that there may be cross talk between intracellular S. aureus and
pulmonary epithelial cells. However, a previous study by Lowy
and colleagues (18) found no difference in lysosomal fusion
between viable and UV-killed S. aureus that had been inter-
nalized into cultured human endothelial cells. The difference
in results may be due to cell lines (endothelial versus pulmo-
nary epithelial cells) and/or killing methods (UV versus heat).

We also demonstrated that infected airway epithelial cells
revealed evidence of apoptosis, with typical DNA laddering,
alteration of cellular morphology, and annexin V staining oc-
curring at 24 h but not at 4 h after infection. Like human
intestinal epithelial cells infected with invasive intestinal
pathogens (15), airway epithelial cells undergo apoptosis late
in response to S. aureus internalization and replication. The
colocalization of green fluorescent bacteria inside apoptotic
cells in these experiments suggests that bacterial replication
precedes and conceivably induces apoptosis. Time-lapse mon-
itoring of single infected living cells confirmed that intracellu-
lar bacterial replication indeed preceded gross morphological
changes typical of apoptosis (e.g., apoptotic bodies). Apoptosis
was not induced in cells where internalization was blocked by
cytochalasin D or in cells infected with heat-killed bacteria. In
addition, treatment of intracellular bacteria with rifampin, a
bacteriostatic antibiotic that readily enters mammalian cells,
prevented the induction of apoptosis. We also found that
Cowan I, an S. aureus laboratory isolate that was internalized
but failed to replicate, did not induce apoptosis in pulmonary
epithelial cells; likewise, a protein A mutant of S. aureus was
poorly internalized and hence did not lead to apoptosis (un-
published data). Taken together, these data imply that inter-
nalization and replication of metabolically active bacteria are
associated with the commitment of apoptosis in respiratory
epithelial cells.

Several factors, including reduced bacteriocidal activity of
airway surface fluid (24) and/or increased availability of asialo-
GM1 receptors on epithelial cells (12), contribute to persistent
infections with S. aureus in susceptible (e.g., CF) patients. It
now appears that internalization and replication of S. aureus in
pulmonary epithelial cells, with ensuing apoptosis, may be im-
portant factors contributing to the pathogenesis of persistent S.
aureus infections in patients with compromised airway defense
mechanisms. The triggering of apoptosis may be a host re-
sponse to reduce or inhibit bacterial proliferation, since these
cells will be sloughed off or phagocytosed by scavenging mac-

FIG. 5. Staining of extracellular bacteria with anti-protein A antibody. At 4 h after infection of CFT-1 cells with GFPuvr-expressing S. aureus (A, GFP channel in
gray scale), the cells were probed with chicken anti-protein A antibody, followed by a TRITC-labeled second antibody to label bacteria that were not internalized (B,
TRITC channel). (C) Merged image of phase contrast and both channels.

FIG. 6. DNA fragmentation in CFT-1 cells following infection with increas-
ing inocula of S. aureus RN6390. At indicated times after infection, epithelial cell
DNA was extracted, separated in a 2% agarose gel, and stained with ethidium
bromide. Lane M, 100-bp ladder; lanes 1 and 5, control cells; lanes 2 and 6, 1 3
105 CFU/ml (MOI, 0.5:1); lanes 3 and 7, 1 3 106 CFU/ml (MOI, 5:1); lanes 4 and
8, 1 3 107 CFU/ml (MOI, 50:1).
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rophages (27). However, the bacteria released from the apo-
ptotic cells may usurp this defense mechanism by initiating a
new round of host cell infection. Further studies are needed to
understand the molecular mechanisms by which S. aureus rep-
licates intracellularly and induces apoptosis. The indolent rep-
lication of S. aureus also serves to emphasize the importance of
the intracellular growth requirement and the effect of host
factors on bacterial replication. Understanding these phenom-
ena will help identify ways to augment the host immune system
to combat this important pathogen.
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